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Calculation of Microstrip Discontinuity Inductances

ALISTAIR F. THOMSON anp ANAND GOPINATH, MEMBER, IEEE

Abstract—Inductive components of microstrip discontinuity
equivalent circuits are calculated by the Galerkin method. The
formulation and method of calculation are discussed and a large
number of numerical results for symmétric corners, T junctions,
and steps changes are presented. These resulls compare well with
experiment.

INTRODUCTION

HE characterization of microstrip discontinuities by

equivalent circuits is currently of some interest. De-
tailed knowledge of the parameters in these circuits en-
ables easy implementation of paper designs without tedious
cut-and-try methods. While the published literature [1]-
[4] provides curves for the capacitive components of these
circuits, little is available for their inductive components.
The method of calculation suggested by Horton [5], [6]
is not rigorous since the inductance calculation is based
on charge estimates and the results obtained are not in
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agreement with experiment. The magnetic wall model has
been used for triplate lines which are wide and homogenous
and have confined fields, but its extension to microstrip
lines which are inhomogenous and much narrower in com-
parison and are open structures is not completely justified.

Quasi-static calculation of inductance by the moment
method [7] has provided results which show reasonable
agreement with experiment. However, the disadvantage of
this method for these three-dimensional problems as shown
by Farrar and Adams [1] is the very large computer store
requirements even for modest discretization. The alterna-
tive is to use a finite-element method as in the skin-effect
formulation [8]. The results of discontinuity inductance
from this method obtained previously were inaccurate as
they were arrived at by subtracting two nearly equal
numbers. Also the method was limited to finite-length
strips and thus could not represent the actual situation
in which the strips extend so far from the discontinuity
that they may be considered as semi-infinite. The present
paper is an extension of this finite-element method which
overcomes these difficulties, and the results obtained for
right-angled bends, step-width changes, and symmetrical
T junctions are presented in the form of curves. Compari-
son of the results with experiment [97] shows reasonable
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agreement with extrapolated low-frequency values, valid
up to 5 GHz with 0.020-in alumina substrate. Unfortu-
nately, these inductive components are frequency depend-
ent, and quasi-static calculation can provide only their
low-frequency values. However, in the absence of any
rigorous time-dependent solution, it is hoped that the
method and associated results given here provide a firm
starting point for designers.

The computer program developed for this work is capa-~
ble of providing data on a variety of discontinuities pro-~
vided that these have Manhattan-type geometries. This
limitation is due to a singularity in the Green’s function
which is easily integrable only over a rectangular element.
However, this limitation may be circumvented at the ex-
pense of computation time, but was not considered worth-
while at the present time.

The data presented in this paper could be obtained ex-
perimentally as demonstrated by Easter [9]. But the
experiments need to be carefully performed and the evalu-
ation of the equivalent circuit of one example of the
symmetric T requires a large number of measurements.
Since such experimental data is never comprehensive, the
calculation outlined here provides a low-frequency value
of the inductive components for a variety of discontinuity
geometries.

FORMULATION OF PROBLEM

The formulation assumes quasi-static conditions which
imply the following: the size of the discontinuity is small
compared to the wavelength; retardation effects can be
neglected; the current on the strip has zero divergence.

Since inductive calculations are involved, the presence
of the dielectric substrate (provided it is nonmagnetic)
may be disregarded, and only the discontinuity structure
and its image in the ground plane need be considered. The
discontinuity is assumed to be the junction of two or more
semi-infinite uniform lines.

The magnetic vector potential A due to the current den-
sity J on any section of the line or discontinuity is given by

i- p(,/GJdV (1)

where the Green’s function @ is
_ 1
drl[(x — 20)2 + (¥ — 40)? + (2 — 20)2]2°

From Maxwell’s equations, the electric field in the dis-
continuity structure is

G

(2)

where ¢ is the scalar impressed potential. Ohm’s law re-

quires that
J = oE 3

where ¢ is the conductivity of the strip structure. Substi-
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tuting from (1) and (3) into (2) gives

- 0 -

T+ yoaa—thJ AV = —oVe (4)
which is the integro-differential skin-effect ecuation. Since
we are only concerned with microstrip lines where ¢ is
very large and the frequency of operation is high, the first
term in (4) is small and may be neglected to give

a -
& poo — | GJ dv =~ —V¢.

Py (5)

This is equivalent to saying that the impressed electric
field in the strip conductor is balanced by the magnetically
induced fields, and the ohmic drop is negligible.

The curl of (5) gives

oB

0 -
\v4 —_ / = — =
X [GTav =2 =0 )

which is the high-frequency condition when zero flux pene-
trates the conductors.
The divergence of (5) gives

Vi¢ =0 (7)

i.e., the impressed potential satisfied Laplace’s equations
on the strip conductors.

Thus the governing equations to be solved for this
problem are (5) and (7) or, alternatively, (6). The former
two equations were solved as it is inconvenient in this
finite-element implementation to use (6) because the inte-
gration of the associated Green’s function in (6) is com-
putationally lengthy. The solutions of (7) for ¢, and then
(5) for the current density J enable the inductance of the
stripline structure to be obtained from the following rela-
tionships:

//I-J v = PL )

and

fJ'ds - I ©)

METHOD OF SOLUTION
For convenience, the strip is assumed to be thin, and
therefore the current density J is uniform across the thiek-
ness of the strip . Thus J is a two-dimensional vector,
and volume integrals become surface integrals and surface
ones become line integrals. Equation (5) thus becomes

jwuo'r/GJ dS = —V¢ (10)

where

r  thickness of the strip conductor;
« angular frequency;
@G; modified Green’s function which includes the ground -
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plane images

1
G,‘ =
dr[(x — 20)? + (y — yo)2 ]2

1
" dal(z — 2)? + (y — o) + (2h)2R
h  thickness of the substrate.

Define a new variable ®
® = ¢/( jor)

and (10) becomes

and furthermore, (7) becomes
e = 0. (12)

The problem requires to be solved over the whole dis-
continuity structure including the semi-infinite lines, and
this becomes impractical without further modifications.
However, the effects of the discontinuity fields diminish
rapidly from the junction as can be seen by solving
Laplace’s equation in each case by conformal transforma-
tion and noting how far from the discontinuity V& is
perturbed from the uniform field condition. Thus at
some distance the current distributions and inductances
of the lines can be assumed to be that of equivalent infi-
nite uniform lines. Reference planes are defined at these
positions and for a right-angled symmetrical bend dis-
continuity; these are PP’ and Q@' as shown in Fig. 1,
distance { from the discontinuity reference planes MM’
and NN’. The equation need only be solved in the strip

Y
el M'T
| (xg ¥1)
| [
! |
I
semi_infinite | section 2 | section 3
tine (1) (52) ,+\ (S3)
l Y
section 1 |
(s l |
| " x
T e Bl L At
p T (xqyQ) (%1 %y
section 4
2 s4)
) R [
semu_infinite line
(2)
section 5 (S5)
Fig. 1. Plan view of a symmetric right-angle bend in microstrip

showing the discontinuity reference planes MM’ and NN’ and
the boundary planes PP” and QQ'. Also shown is the subdivision
of the structure in rectangular elements S1 to S5.
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region bounded by the planes PP’ and Q’, with the
constraint that the solution mateches that of the inifinite
uniform strip solution at these bounding planes. The mag-
netic vector potential due to the semi-infinite lines termi-
nating at these planes PP’ and QQ’ also requires to be
taken into consideration in (11).

Solving (12) and (11) gives the current distribution in
the region bounded by PP’ and Q@' in Fig. 1. The total
inductance Ly of this region, bounded by PP’ and QQ’ in
Fig. 1, can then be obtained from (8) and (9), and the
required discontinuity inductance L, is obtained by sub-
tracting the inductance of a 2[ length of equivalent uni-
form infinite line from Ly. Thus the inductance of the
semi-infinite line is assumed to be that of uniform infinite
line L,, up to the discontinuity reference planes MM’
and NN'.

Hence

L,= Ly — 2IL, (13)
where

L, discontinuity inductance between the reference
plane MM’ and NN';

L, inductance per unit length of the uniform infinitely
long line;

Ly total inductance of the section between PP’ and
QQ';

l distance of PP’ and Q@' from MM’ and NN’, re-
spectively.

Equation (13) gives L, from the subtraction of two
nearly equal numbers; hence the error in L, is approxi-
mately that of the absolute value of error Lz, hence accu-~
racy of L, becomes a problem. This is overcome using the
excess-current (charge) technique of Silvester and Benedek
[10]. The uniform infinite-line current-density distribu-
tion J, is assumed to exist from — o up to MM’, and
from NN’ onwards to — « ; and in the discontinuity MM’
to NN’ a known current distribution J; is defined to pre-
serve continuity of current. Excess circulating current J,
is added in the entire region between PP’ and @@’ so that
the known assumed current distributions are redistributed
to satisfy the governing equation. The magnitude and dis-
tribution of this excess circulating current is determined
from the solution of (11). The gradient of the impressed
potential V& which is the right-hand side (RHS) of this
equation can be obtained by the solution of the Laplace’s
equation on the strip regions between PP’ and QQ’ with
appropriate boundary conditions. Thus (11) becomes

wo [ GTewaS+um [ GilTeot Jo)dS+um [ GJads
S1 Sa2

+ m/ Gi( Ty + Jod) dS + ,Lof GiTyo dS = —V®
Sa
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(14)

where J 3 is the sum of J; and J, in this region 3, and V&
is known. _ : ’
Now J., and Jy. can be obtained by solving (11) and
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(12) for the uniform infinite line with the same w/h val-
ues, where w is the width of the strip and % is the thick-
ness of the substrate. Since these currents (J,, and J,,)
vary only with respect to ¥ and z, respectively, the inte-
gration with respect to z and y, respectively, ean be per-
formed analytically. We also note that J,, extends from
= —w to MM’, and J,, extends from y = NN’ to
— o, thus (14) becomes

Y1
o f GJ.dS = —V& — g f GuT o dy
Sy Yo

T -
— [ GoFyeds  (15)
x0

where the reference plane MM’ is the line ¢ = xz,; NN’ is
the line ¥ = yy; Sr is the strip region between PP’ and
QQ’, and the Green’s functions are

G=1o [<xo—x>+{(xo—x)2+(yo—y>2+(2h>2}1/2]
T @m0+ (o — 92+ (0 — 9}

(16)
and

Gy = Ioge[(y" —y) + {(yo—y)?+ (ro — x)2 + (2h)2}1l2] ‘

Wo — ¥) + {(Wo — Y)? + (20 — )2}112
(17)

Note that these Green’s functions are obtained for a
semi-infinite line and its image in ground plane. Equation
(15) is solved by the Galerkin method, and the solution
for J, in each region is used to calculate the excess in-
ductance L, in the following manner.

From (13)

Lc = LT - 2ZL,,.

Express Lrin terms of 4 and J and hence

12LT=/ A-JdS
S

A-JsdS
3

- /Szfi-(imfez) dS+fS

+ [ ATy + T S, (18)
Sa

Consider the first term on the RHS of this equation. From
(1) we have

A= f Gid 20 AS + po / Gi(Jpo + J2) dS

S 82

tuo [ GTsdS+w [ GilTyot Ta) S

83 Sa

o f GiTyw dS

8s
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which simplifies to
Y1 - r1 - r -
4 = f GiTw dy + 1o f Gulydztuo [ G.J.as.
30 z0 S

(19)

Hence the first term in (18) becomes

f AedondS = o / / GoT o dyT o S
Sa

82 “yo

+ 4o / f GoT v A5+ T 1g S

82 * z0

+ 1o f / GJ.d8-J.ndS.  (20)

82V 8y

Now let

Y1 " _
Pl = —p / f GoT o T dS

82 % wo

where

G, = [(w — @) + (&= 2)* + (% — y)* +- (2h>2}1/2]
’ (2 — @) + {(z — @)* + (30 — 9)*}™

and L_y.,, is the difference in inductance between a length
I m long from the termination point of semi-infinite line
and that of a length [ m long of infinite line. This term is
added to and subtracted from RHS (20): in the addition
it combines with first term of (20) to give IL,.

Also note that since J., and J,, are perpendicular to
each other so that

Y1
o [ f GoT o die T dS = 0,

82 “yo

Thus

f A-JondS = P(Ly — Loapa)
S2

+ ko f f Gl dS-J . dS. (21)-
SV 87

Similarly, simaplifications are made for the third term in
(18). Thus the whole equation now becomes

2Ly = I?(IL,, — L_150) + o / / G dS-J,dS

83 ¥ St

Py~ Lape) + 1 [ [ GidodS-TpodS

84 8T

+ / A-J.d8 (22)
83

and hence substituting Ly from (22) into (13) gives
Le = Loar — 2L_4p, (23)

where
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IZLCAL = #0/ / Gija dS'jzeo dS
82 ¥ 87

+ m,/ / GT.dS-T,u dS +/ A7, ds.
S4Y ST 83

Although L, is still obtained by subtracting two values,
the numerical error is much smaller since L. is of the same
order as that of Leay and L_yps,

The alternative scheme is to define V® as the sum of
two quantities, thus

V® = V&, + VI, (24)

where V®,, is the gradient obtained in an infinite uniform
line and V&, is the excess gradient due to the discontinuity.
Also from (11) we have

m/GJdS-—— A=—-Vd=—(Vd,+ V®,)

which is to be substituted in (18). The second term of
RHS of (13) becomes ‘

APL, = — / Ve T dS — f VT dS.  (25)
Sz 84

Substituting from (24), (25), and (18) in (13) gives

L, = 1—[/ v<1>e-JgdS+f Vo, -J,dS
12 St Sr

+ / V@e-deS]. (26)
St

Note that if the Galerkin method is used with the trial
functions for J, being identical to the projection functions,
these terms (apart from V®,-J ) have all been evaluated
in the solution of (15). It would appear on first sight that
the latter method would be better since it involves no
subtraction. However, it is easily shown that

f Vo, T dS = / f G J.dS-J..dS

S22 ¥ St

tm [ [ 6T aSTpedS — 2Lipad
B84 Y 87
is often negative, and

/ vV, J.dS + f V@yrd . dS = f A-J.dS
ST Sr Sr

is most often positive; thus this method also often involves
the subtraction of the two numbers. This is also the case
in the first method, where the result L, is obtained as the
difference or sum of two numbers.

Also in the latter method the ratio of magnitude of V&
to I is important since terms are divided by I2, and thus
. any error will appear in the results. However, in the former
method, all terms involve the product of two currents,
and thus any error in magnitude cancels out. In the
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Fig. 2. Equivalent circuits of three microstrip discontinuities with
the positions of the reference planes. (a) Symmetric right-angled
bend, strip w: wide. (b) Step-width change from strip w; width
to w, width. (¢) Symmetric T junction, straight arms w: wide;
vertical, w, wide. Substrate thickness kept constant at b = 1.
The inductances given in these circuits are plotted in Figs. 3-6.

former method the term L_yj, is calculated previously
using a large number of Gaussian points to obtain the
value accurately, whereas in the latter method, V® must
be obtained very accurately (0.1 percent) to ensure that
term [V®,-J,dS is accurately determined. Thus the
method to be used is not clear cut; for the calculations
given here the former was used throughout.

Although the technique is illustrated for a symmetrie
right-angled corner, the extension to other discontinuities
such as the T and step change are simple and require no
further elaboration.

The method of numerical implementation is by the
Galerkin method and is similar to that used by Gopinath
and Silvester [8] and thus will not be included here. The
only difference is that the current density J requires to be
nondivergent, and this is accomplished by defining a vec-
tor action potential W so that

VXW=J
and hence
v-J =0

is satisfied.

Since J is a two-dimensional vector, J, being zero, W
need only have a z-directed component. Thus the preced-
ing equations are recast, replacing J by (V X W,) and
J.by (V X W.,) in the numerical solution. In this case,
it was necessary only to ensure continuity of normal com-
ponent of current or potential W at common boundaries
between elements. This was implemented using the gen-
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Fig. 3. Normalized inductance of a symmetric right-angled bend
AL/(Lewh) plotted for different w/h ratios. Comparison is with
experimental results from Easter [9].
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Fig. 4. Normalized inductance for step-width change AL/(Lewih)
for w;/h = 0.5 and 1.0 for different wa/h. Experimental results
for one value are marked.

eralized matrix inverse technique also discussed previ-
ously [8].
RESULTS AND DISCUSSION

Preliminary tests were performed to check the induct-
ance of straight uniform infinite lines segmented in the
center for different w/h values. These results were in
excellent agreement with those obtained from Silvester’s

method of images program [117]. Although this test is
essentially trivial, the method and the program operation
are checked.

Subsequently, a large number of runs were performed
on the step-width change, symmetric right-angled bend,
and symmetric T junction, for a number of different w/h.
These results compared favorably with experimental re-
sults due to Easter [9] as shown in Figs. 2-6. It is apparent
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Fig. 5. Normalized inductance of the straight arm of the

. (a)

T junetion AL1/(L wwih) for wi/h = 1.0 for different ws/h. Com-
arison is with the experimental results of Easter [9] and caleu-
ated due to Vogel [12]. (b) Normalized inductance of the vertical

leg of the T, ALs/(Leweh) for wi/h = 1.0 for different wy/h. Com-

parison is with experiment [9] and Vogel [12].

that the agreement worsens when the experimental in-
ductance values are highly frequency dependent, the esti-
mate falling outside the experimental error range. It is
expected that the results for step~width changes and the
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Fig. 6. (a) Normalized inductance of the straight arm of the T,
ALy /(Lwih) for wi/h = 0.5, 1.0, 1.5, and 2.0 for different w,/h.
(b) Normalized inductance of the vertical leg of the T, AL/(Lauwsh)
for wi/h = 0.5, 1.0, 1.5, and 2.0 for different ws/h.

straight arms of the T are within a few percent of the
actual values. For the bend and the vertical leg of the T,
the results are somewhat worse and the reason for this are
not determined. Fig. 5(a) and (b) shows comparison of
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our calculation with those of Vogel [127], and obtains better
agreement with the experimental results. Note that ex-
periment shows that these negative line lengths decrease
with increasing frequency.

CONCLUSION

‘A method of calculating quasi-static microstrip discon~
tinuity inductance has been outlined. The computer pro-
gram written for these calculations has given results which
compare favorably with experiment. Curves for some
widely used discontinuities have been provided.
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The Equivalent Circuit of Some Microstrip Discontinuities

BRIAN EASTER

Abstract—~The experimental characterization of some microstrip
structures of common interest, including symmetrical T junctions,
is described. Some results are compared with data derived from re-
cent three-dimensional static theory and from the uniform plane-
wave model. It is concluded that while the three-dimensional theory
requires further improvement, it is generally in much better agree-
ment with the measured data than the two-dimensional uniform
plane-wave model.

I. INTRODUCTION

HERE IS NOW available a substantial body of data
on the properties of uniform microstrip lines. In con-
trast, the circuit designer is often without adequate in-
formation on the discontinuity and junction structures
comprised in typieal practical circuits. Presently available
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equivalent circuit data fall broadly into two categories.
First, there is a growing body of information [17]-{4] on
the quasi-static capacitance of microstrip structures,
supplemented more recently by studies of the inductance
[561-[7]. In due course this approach should provide
accurate quasi-static data on all structures of interest, but,
of course, with no indication of dynamic effects. A second
source of data derives from the use of a uniform plane-
wave parallel plate model of the microstrip cross section
as described by Vogel [14] and others, following the
method applied by Oliner [8] to symmetrical (“tri-
plate”) strip lines: This approach has the great advantage
of reducing the problem to two-dimensional complexity.

" Closed-form expressions are available in classical texts

[9] for several quasi-static elements, and some studies
[107, [11] have directly tackled the dynamic situation. In
addition, reference to Babinet equivalence enables the use
of rectangular waveguide data. Against these advantages,
there remains the difficulty of any estimation of the error
associated with the use of the uniform plane-wave model.
It can be noted that not only is the proportion of fringe



