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Calculation of Microstrip Discontinuity Inductances

ALISTAIR F. THOMSON AND ANAND GOPINATH, MEMBER, IEEE

Abstract—Inductive compo-nents of microstrip discontinuity

equivalent circuits are calculated by the Galerkin method. The

formulation and method of calculation are discussed and a large

number of numerical results for symmetric corners, T junctions,

and steps changes are presented. These results compare well with

experiment.

INTRODUCTION

T HE characterization of microstrip discontinuities by

equivalent circuits is currently of some interest. De-

tailed, knowledge of the parameters in these circuits en-

ables easy implementation of paper designs without tedious
cut-and-try methods. While the published literature [l]–

[4] provides curves for the capacitive components of these

circuits, little is available for their inductive components.

The method of calculation suggested by Horton [5], [6]

is not rigorous since the inductance calculation is based

on charge estimates and the results obtained are not in
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agreement with experiment. The magnetic wall model has

been used for triplate lines which are wide and homogeneous

and have confined fields, but its extension to microstrip

lines which are inhomogenous and much narrower in com-

parison and are open structures is not completely justified.

Quasi-static calculation of inductance by the moment

method [7] has provided results which show reasonable

agreement with experiment. However, the disadvantage of

this method for these three-dimensional problems as shown

by Farrar and Adams [1] is the very large computer store

requirements even for modest discretization. The alterna-

tive is to use a finite-element method as in the skin-effect

formulation [8]. The results of discontinuity inductance

from this method obtained previously were inaccurate as

they were arrived at by subtracting two nearly equal

numbers. Also the method was limited to finite-length

strips and thus could not represent the actual situation
in which the strips extend so far from the discontinuity y

that they may be considered as semi-infinite. The present

paper is an extension of this finite-element method which

overcomes these difficulties, and the results obtained for

right-angled bends, step-width changes, and symmetrical

T junctions are presented in the form of curves. Compari-

son of the results with experiment [9] shows reasonable
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agreement with extrapolated low-frequency values, valid

up to 5 GHz with 0.020-in alumina substrate. Unfortu-

nately, these inductive components are frequency depend-

ent, and quasi-static calculation can provide only their

low-frequency values. However, in the absence of any

rigorous time-dependent solution, it is hoped that the

method and associated results given here provide a firm

starting point for designers.

The computer program developed for this work is cap%

ble of providing data on a variety of discontinuities pro-

vided that these have Manhattan-t ype geometries. This

limitation is due to a singularity in the Green’s function

which is easily integrable only over a rectangular element.

However, this limitation may be circumvented at the ex-

pense of computation time, but was not considered worth-
while at the present time.

The data presented in this paper could be obtained ex-

perimentally as demonstrated by Easter [9]. But the

experiments need to be carefully performed and the evalu-

ation of the equivalent circuit of one example of the

symmetric T requires a large number of measurements.

Since such experimental data is never comprehensive, the

calculation outlined here provides a low-frequency value

of the inductive components for a variety of discontinuity y

geometries.

FORMULATION OF PROBLEM

The formulation assumes quasi-static conditions which

imply the following: the size of the discontinuity is small

compared to the wavelength; retardation effects can be

neglected; the current on the strip has zero divergence.

Since inductive calculations are involved, the presence

of the dielectric substrate (provided it is nonmagnetic)

may be disregarded, and only the discontinuity y structure

and its image in the ground plane need be considered. The

discontinuity is assumed to be the junction of two or more

semi-infinite uniform lines.

The magnetic vector potential ~ due to the current den-

sity ~ on any section of the line or discontinuity is given by

where the Green’s function G is

(1)

tuting from (1) and (3) into (2) gives

(4)

which is the integro-differential skin-effect equation. Since

we are only concerned with microstrip lines where u is

very large and the frequency of operation is high, the first

term in (4) is small and may be neglected to give

(5)

This is equivalent to saying that the impressed electric

field in the strip conductor is balanced by the magnetically

induced fields, and the ohmic drop is negligible.

The curl of (5) gives

(6)

which is the high-frequency condition when zero flux pene-

trates the conductors.

The divergence of (5) gives

v#=o (7)

i.e., the impressed potential satisfied Laplac e’s equations

on the strip conductors.

Thus the governing equations to be sollved for this

problem are (5) and (7) or, alternatively, (6’1. The former

two equations were solved as it is inconvenient in this

finite-element implementation to use (6) because the inte-

gration of the associated Green’s function in (6) is com-

putationally lengthy. The solutions of (7) for d, and then

(5) for the current density ~ enable the inductance of the

stripline structure to be obtained from the following rela-

tionships:

and

J

METHOD OF SOLUTION

(9)

1 For convenience, the strip is assumed to be thin, and

G = 47r[(z – *O)’ + (y – ‘?Jo)’+ (z – 2.)2]’/2 “ therefore the current density ~ is uniform across the thick-

From Maxwell’s equations, the electric field in the dis-
ness of the strip r. Thus ~ is a two-dimensional vector,

continuity structure is
and volume integrals become surface integrals and surface

ones become line integrals. Equation (5) thu~~ becomes

(2)
jwpor JGi] dS = – V~ (lo)

where @ is the scalar impressed potential. Ohm’s law re- where
quires that

J=UE (3) :
thickness of the strip conductor;

angular frequency;

where a is the conductivity of the strip structure. Substi- G~ modified Green’s function which includes the ground
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plane images

1

‘i = 4T[(X – ~)L + (y – YO)Z]112

1
—

47r[(x – XI))2 + (y – yll)z + (2h)2]l/2

h thickness of the substrate.

Define a new variable @

@ = 0/( jcw)

and (10) becomes

/
p, G,~ dS = – V@ (11)

and furthermore, (7) becomes

172@ = (). (12)

The problem requires to be solved over the whole dis-

continuity y structure including the semi-infinite lines, and

this becomes impractical without further modifications.

However, the effects of the discontinuity fields diminish

rapidly from the junction as can be seen by solving

Laplace’s equation in each case by conformal transform~

tion and noting how far from the discontinuity V@ is

perturbed from the uniform field condition. Thus at

some distance the current distributions and inductances

of the lines can be assumed to be that of equivalent infi-

nite uniform lines. Reference planes are defined at these

positions and for a right-angled symmetrical bend dis-

continuity; these are PP’ and QQ’ as shown in Fig. 1,

distance 1 from the discontinuity reference planes MM’

and NN’. The equation need only be solved in the strip

sem I.mfin ta
(me(1)

sect ion 1

(s1)

I

Section 2 ~ section 3

(s2) (s3)

Iy
I

‘T’x’’-’x-

!-
sectmn 4

t (s4 )

—. —
Q—

sema.infmta line

(2)

section 5 (S5)

Fig. 1. Plan view of a symmetric righ+sngle bend in microstrip
showing the discontinuity reference planes MM’ and NN’ and
the boundary planes PP’ and QQ’. Also shown is the subdivision
of the structure in rectangular elements 81 to S5.

region bounded by the planes PPt and QQ’, with the

constraint that the solution matches that of the inifinite

uniform strip solution at these bounding planes. The mag-

netic vector potential due to the semi-infinite lines termi-

nating at these planes PP1 and’ QQ’ also requires to be

taken into consideration in (11).

Solving (12) and (11) gives the current distribution in

the region bounded by PP’ and QQ’ in Fig. 1. The total

inductance LT of this region, bounded by PP’ and QQ’ in

Fig. 1, can then be obtained from (8) and (9), and the

required discontinuity y inductance L. is obtained by sub-

tracting the inductance of a 21 length of equivalent uni-

form infinite line from L2.. Thus the inductance of the

semi-infinite line is assumed to be that of uniform infinite

line L., up to the discontinuity reference planes MM’

and NN’.

Hence

where

L.

L.

LT

1

discontinuity inductance between the reference

plane AIM’ and NN’;

inductance per unit length of the uniform infinitely

long line;

total inductance of the section between PP’ and

QQ’;
distance of PP’ and QQ’ from MM’ and NN’, re-

spectively.

Equation (13) gives L. from the subtraction of two

nearly equal numbers; hence the error in L. is approxi-

mately that of the absolute value of error LT, hence accu-

racy of L. becomes a problem. This is overcome using the

excess-current (charge) technique of Silvester and Benedek

[10]. The uniform infinite-line current-density distribu-

tion ~m is assumed to exist from – co up to MM’, and

from NN’ onwards to – co ; and in the discontinuity M&f’

to NN’ a known current distribution ~d is defined to pre-

serve continuity of current. Excess circulating current ~.

is added in the entire region between PP’ and QQ’ so that

the known assumed current distributions are redistributed

to satisfy the governing equation. The magnitude and dis-

tribution of this excess circulating current is determined

from the solution of (11). The gradient of the impressed

potential V@ which is the right-hand side (RHS ) of this

equation can be obtained by the solution of the Laplace’s

equation on the strip re@ons between PP’ and QQ’ with

appropriate boundary conditions. Thus (11) becomes

where ~d is the sum of ~d and ~. in this region 3, and V@

is known.

Now ~zm and ~Va can be obtained by solving (11) and
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(12) for the uniform infinite line with the same w/h val-

ues, where w is the width of the strip and h is the thick-

nessof the substrate. Since these currents (~~~ and~,w)

vary only with respect to Y and x, respectively, the inte-

gration with respect to xandy, respectively, can be per-

formed analytically. We also note that ~~m extends from

x = — w to MM’, and Jum extends from y = NN1 to
— co, thus (14) becomes

/

21

— PO G2jUW d. (15)
%0

where the reference plane MM’ is the line x = XO;NNt is

the line y = yO; ST is the strip region between PP’ and

QQ’, and the Green’s functions are

which simplifies to

/

‘il

/

xl

A=po Gl~z.w dy + PO Gz~Udx + M
!

G,~. dfi’.
ffo Zo ,!~T

(19)

Hence the first term in (18) becomes

+ PoH G,~e dfl.~zm dS. (20)
SZ ST

Now let

(16)

and

GZ = loge
[

(?/0 – Y) + { (!/0 – Y)2 + (ZO – ~)’+ (2h)2)’/2 1(Yo – Y) + {(YO – Y)’+ (ZO – Z) ’) ’l’ “

(17)

Note that these Green’s functions are obtained for a

semi-iniinite line and its image in ground plane. Equation

(15) is solved by the Galerkin method, and the solution

for ~. in each region is used to calculate the excess in-

ductance L. in the following manner.

From (13)

L. = L. – 21Lm.

Express LT in terms of ~ and ~ and hence

Consider the first term on the RHS of this equation. From

(1) we have

where

[

G, = (z – Zo) + {(z – XII)’ + (yo – y)’ + (2h)2}’12

(x – Zo) + {($ – x,)’ + (y. – 3/) ’) ’/2 1
and L_ll’~ is the difference in inductance between a length

1 m long from the termination point of semi-infinite line

and that of a length 1 m long of infinite line. ‘This term is

added to and subtracted from RHS (20) : in the addition

it combines with first term of (20) to give lL,n.

Also note that since ~zw and ~U~ are perpendicular to

each other so that

Thus

/
A .~zm dS = I’(lLm – L_l/’m)

S2

Siilarly, simplifications are made for the tlhird term in

(18). Thus the whole equation now becomes

+ I’(lLm – L_l/2cJ + m
//

G,j. dS.~VWdS
S4 S!r

+/ ~-~.dS (22)

S3

and hence substituting LT from (22) into (13) gives

L. = LCA~ — 2L–112~ (23)

where
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H12-LCAL=PO ~, ~, G,], d~”~z. dtl

+ No/’ /’ G,jedS”ju. dS +1 ~“~. dfi
sb sT Sa

Although L. is still obtained by subtracting two values,

the numerical error is much smaller since L. is of the same
order as that of LGA~ and L–112.

The alternative scheme is to define V@ as the sum of

two quantities, thus

V* = V*. + V*. (24)

where V@a is the gradient obtained in an infinite uniform

lime and V+. is the excess gradient due to the discontinuity.

Also from (11 ) we have

/
~. Gi~dS=~ = _V@~ _(V@m+ V@@)

which is to be substituted in (18). The second term of

RHS of (13) becomes

2112L. = –
/

V&”~ZW dS –
!

V@UW”~U_dS. (25)
S2 S4

Substituting from (24), (25), and (18) in (13) gives

1

[/
L.=~ ST V@..j. dS +

/
V@..~. dS

sT

1
+ ~ V@.”~ca dS . (26]

sT

Note that if the Galerkin method is used with the trial

functions for ~. being identical to the projection functions,

these terms (apart from V@.” ~m) have all been evaluated

in the solution of (15). It would appear on first sight that

the latter method would be better since it

subtraction. However, it is easily shown that

/
V@.. ~. dS = PO

H
Gi~. dS.~=m dS

S2 ST

involves no

+ /JoH Gi~. dS. ~VWdS – 2L_l,zml
s4 sT

is often negative, and

I
V+.. ~e dS +

I
V*W . ~. dS =

I
~.~.dS

sT Sr ST

is most often positive; thus this method also often involves

the subtraction of the two numbers. This is also the case

in the first method, where the result L. is obtained as the

difference or sum of two numbers.

Also in the latter method the ratio of magnitude of V@

to I is important since terms are divided by 12, and thus

any error will appear in the results. However, in the former

method, all terms involve the product of two currents,

and thus any error in magnitude cancels out. In the

AL? ALI

ALI ALZ

AL , ALI + ALZ

ALI ALI

T

ALZ

I

B

T

(a)

(b)

%

w
1- __

w

HIIw , W2

mw w
—+—

W2

(c)

Fig. 2. Equivalent circuits of three microstrip discontinnities with
the positions of the reference planes. (a) Symmetric right-angled
bend, strip w, wide. (b) Step-width change from strip w, width
to wz width. (c) Symmetric T junction, straight arms WI wide;
vertical, wz wide. Substrate thickness kept constant at h = 1.
The inductances given in these circuits are plotted in Figs. 3-6.

former method the term L-ll,m is calculated previously

using a large number of Gaussian points to obtain the

value accurately, whereas in the latter method, V* must

be obtained very accurately (O.1 percent) to ensure that

term Jv+.. J. dS is accurately determined. Thus the

method to be used is not clear cut; for the calculations

given here the former was used throughout.

Although the tectilque is illustrated for a symmetric

right-angled corner, the extension to other discontinuities

such as the T and step change are simple and require no

further elaboration.

The method of numerical implementation is by the

Galerkln method and is similar to that used by Gopinath

and Silvester [8] and thus will not be included here. The

only difference is that the current density ~ requires to be

nondivergent, and this is accomplished by defining a vec-

tor action potential ~ so that

Vxw=l

and hence

V.?i = o

is satisfied.

Since ~ is a two-dimensional vector, J, being zero, W

need only have a z-directed component. Thus the preced-

ing equations are recast, replacing ~ by (V X W.) and

~. by (V X W.e) in the numerical solution. In this case,

it was necessary only to ensure continuity of normal com-

ponent of current or potential W at common boundaries

between elements. This was implemented using the gen-
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%

Fig. 3. Normalized inductance of a symmetric right-angled bend
AL/(Lab) plotted for different w/h ratios. Comparison is with
experimental results from Easter [9].

0.>
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d “z
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c

0.(

I

calculated result for w, h: O 5

calculated result forwlh, 10

experimental bar for wlh.1 O

//
/

/

1 1
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s
h

Fig. 4. Normalized inductance for step-width change ~/(L_A)
for w,/h = 0.5 and 1.0 for different w*/h. Experimental results
for one value me marked.

erdized matrix inverse tectilque also discussed previ- method of images program [11]. Althougll~ this test is

ously [8]. essentially trivial, the method and the program operation

RESULTS AND DISCUSSION are checked.

Subsequently, a large number of runs were performed

Preliminary tests were performed to check the induct- on the step-width change, symmetric right-angled bend,

ante of straight uniform infinite lines segmented in the and symmetric T junction, for a number of different w/h.

center for cliff erent w/h values. These results were in These results compared favorably with experimental re-

excellent agreement with those obtained from Silvester’s suits due to Easter [9] as shown in Figs. 2–6. It is apparent
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Fig. 5.. (a) Normalized inductance of the straight arm of the (b)
T junction AL1/(Lov,h) for w,/h = 1.0 for different wt/h. Com-

~ated due to Vogel [12]. (b) Normalized inductance of the vertical
arisen is with the experimental results of Easter [9] and calcu- Fig. 6. (a) Normalized inductance of the straight arm of the T,

AL1/(L_,h) for w,/h = 0.5, 1.0, 1.5, and 2.0 for different wz/h.
leg of the T, &Lt/(L~wjh) for w,/h = 1.0 for different wt/h. Cor- n(b)Normalizwf inductance of the vertical leg of the T, AL/(L_&)
parison is with experiment [9] and Vogel [12]. for W, /h = 0.5, 1.0, 1.5, and 2.0 for different w2./h.

that the agreement worsens when the experimental un- straight arms of the T are within a few percent of the

ducta,nce values m-e highly frequency dependent, the esti- actual values. For the bend and the vertical leg of the T,

mate falling outside the experimental error range. It is the results are somewhat worse and the reason for thk are

expected that the results for st~p-width changes and the not determined. Fig. 5(a) and (b) shows comparison ~f
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our calculation with those of Vogel [12], and obtains better

agreement tith the experimental results. Note that ex-

periment shows that these negative line lengths decrease

with increasing frequency.

CONCLUSION

A method of calculating quasi-static microstrip discon-

ti&ity inductance has been outlined. The computer pro-

gram written for these calculations has given results which

compare favorably with experiment. Curves for some

widely used discontinuities have been provided.
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The Equivalent Circuit of Some Microstrip Discontir)uities

BRIAN EASTER

Absthzc+’rhe experimental characterization of some microstrip

structures of common interest, including synunetricaf T junctions,

is described. Some results are compared with data derived from re-

cent three-dimensiotial static theory and from the uniform plane-

wave model. It is concluded that while the three-dimensional theory

requires further improvement, it is generally in much better agree-

ment with the measured data than the two-dimensional uniform

plane-wave model.

I. INTRODUCTION

THERE IS NOW available a substantial body of data

on the properties of uniform rnicrostrip lines. In con-

trast, the circuit designer is often without adequate in-

formation on the discontinuity and junction structures
comprised in typical practical circuits. Presently available
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equivalent circuit data fall broadiy into two categories.

First, there is a growing body of information [1]--[4] on

the quasi-static capacitance of microstrip structures,

supplemented more recently by studies of the inductance

[5]-[7]. In due course this approach should provide

accurate quasi-static data on all structures of interest, but,

of course, with no indication of dynamic effects. A second

source of data derives from the use of a uniform plane-

wave parallel plate model of the microstrip cross section

as described by Vogel [14] and others, following the

method applied by Oliner [8] to symmetrical (( l.ri-

plate” ) strip lines: This approach has the great advautage

of reducing the problem to two-dimensional complexity.

Closed-form expressions are available in classical texts

[9] for several quasi-static elements, and i!ome studies

[10], [11] have directly tackled the dynamic situation. In

addition, reference to Babinet equivalence enables the use

of rectangular waveguide data. Against these advantages,

there remains the difficulty of any estimation of the error

associated with the use of the uniform plane-wave model.

It can be noted that not only is the proportion of fringe


